The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is

  • [JEE MAIN 2019]
  • A

    $3$

  • B

    $4$

  • C

    $5$

  • D

    $7$

Similar Questions

If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi  =$ ....$^o$

If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta  = $

The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :

The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta  = 2,$ is

If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is